Hydrodynamics of the Kuramoto-Sivashinsky Equation in Two Dimensions

نویسندگان

  • Bruce M. Boghosian
  • Carson C. Chow
  • Terence Hwa
چکیده

The large scale properties of spatiotemporal chaos in the 2D Kuramoto-Sivashinsky equation are studied using an explicit coarse-graining scheme. A set of intermediate equations are obtained which describe interactions between the small scale structures and the hydrodynamic degrees of freedom. Possible forms of the effective large scale hydrodynamics are constructed and examined. Although a number of different universality classes are allowed by symmetry, numerical results support the simplest scenario, that being the Kardar-Parisi-Zhang universality class.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact Solutions of the Generalized Kuramoto-Sivashinsky Equation

In this paper we obtain  exact solutions of the generalized Kuramoto-Sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems.    The methods used  to determine the exact solutions of the underlying equation are the Lie group analysis  and the simplest equation method. The solutions obtained are  then plotted.

متن کامل

Application of Daubechies wavelets for solving Kuramoto-Sivashinsky‎ type equations

We show how Daubechies wavelets are used to solve Kuramoto-Sivashinsky type equations with periodic boundary condition‎. ‎Wavelet bases are used for numerical solution of the Kuramoto-Sivashinsky type equations by Galerkin method‎. ‎The numerical results in comparison with the exact solution prove the efficiency and accuracy of our method‎.    

متن کامل

Numerical analysis of the noisy Kuramoto-Sivashinsky equation in 211 dimensions

The nondeterministic Kuramoto-Sivashinsky ~KS! equation is solved numerically in 211 dimensions. The simulations reveal the presence of early and late scaling regimes. The initial-time values for the growth exponent b, the roughness exponent a, and the dynamic exponent z are found to be 0.22–0.25, 0.75–0.80, and 3.0–4.0, respectively. For long times, the scaling exponents are notably less than ...

متن کامل

Some examples of absolute continuity of measures in stochastic fluid dynamics

A non linear Itô equation in a Hilbert space is studied by means of Girsanov theorem. We consider a non linearity of polynomial growth in suitable norms, including that of quadratic type which appears in the Kuramoto–Sivashinsky equation and in the Navier– Stokes equation. We prove that Girsanov theorem holds for the 1-dimensional stochastic Kuramoto–Sivashinsky equation and for a modification ...

متن کامل

Uncertainty estimates and L2 bounds for the Kuramoto-Sivashinsky equation

We consider the Kuramoto-Sivashinsky (KS) equation in one dimension with periodic boundary conditions. We apply a Lyapunov function argument similar to the one first introduced by Nicolaenko, Scheurer, and Temam [18], and later improved by Collet, Eckmann, Epstein and Stubbe[1], and Goodman [10] to prove that lim sup t→∞ ||u||2 ≤ CL 3 2 . This result is slightly weaker than that recently announ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999